Additivity Relationships in the Carbon-13 Nuclear Magnetic Resonance Spectra of Polyhydroxy Steroids

Masaru Kobayashi
Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku Sapporo 060, Japan

Abstract

δ_{c} Values for the ${ }^{13} \mathrm{C}$ NMR spectra of polyhydroxy $5 \alpha, 14 \alpha$-steroids are, as a result of an additivity relationship, equivalent to the sum of the δ_{c} values of the individual 1,2- and 1,3-glycols present in the molecule. Differences in the experimental δ_{c} values ($\Delta \delta^{g}$), reported for a variety of glycols, from those derived from addition of monohydroxy substituent effects, were converted into dihydroxy steroid parameters. Ancillary data for 8β-hydroxy steroids have also been derived. The dihydroxy steroid parameters were applied to 14 different types of known polyhydroxy steroid (6-19) to provide calculated δ_{c} values. The results indicate that, within reasonable limits, this method generally predicts δ_{c} values for polyhydroxy steroids which are close to those observed, except where there is severe steric hindrance present (e.g. as found in the $4 \beta, 6 \beta, 8 \beta, 15 \beta$-tetrahydroxylated steroid 19).

Eggert et al. who provided evidence for a number of ${ }^{13} \mathrm{C}$ NMR substituent effects in a variety of monohydroxy-substituted $5 \alpha, 14 \alpha$-steroids ${ }^{1}$ showed that they reflected the characteristic environment for each OH group: namely, $\alpha-(\mathrm{OH}$ substituted carbon), β-, γ - and δ_{1}-substituent effects. Subsequently VanAntwerp et al. examined the differences (shown as $\Delta \delta^{g}$ in this paper) in the observed δ_{C} values for a number of 1,2- and 1,3glycols from those derived by addition of monohydroxy substituent effects. ${ }^{2}$ The $\Delta \delta^{g}{ }_{s}$ observed were rationalized in relation to the steric and electronic characteristics of each glycol type. Although the monohydroxy substituent effects were subsequently utilized for natural polyhydroxy steroids, ${ }^{3}$ the additivity relationships in dihydroxy steroids have been little used. The $\Delta \delta^{\mathrm{s}}$ s derived from a limited number of glycols, which showed variations, were not parameterized for general application and simply provided δ_{C} values for the natural steroids carrying the same glycol group. The limited ${ }^{13} \mathrm{C}$ NMR results available for polyhydroxy $5 \alpha, 14 \alpha$-steroids when this earlier work was published made an extension of the additivity relationships to polyhydroxy steroids impossible.

Recently, a number of polyhydroxy $5 \alpha, 14 \alpha$-steroids have been isolated mainly from marine sources, ${ }^{4}$ and in a preceding paper we tentatively applied the $\Delta \delta^{\mathrm{g}}$ values to such a compound--the marine tetrahydroxy steroid $9 .{ }^{5}$ The $\Delta \delta^{2} \mathrm{~s}$ due to $1 \alpha, 5 \alpha-$ syndiaxial interaction were not recorded in the report by VanAntwerp et al. so that in this case the data for a $3 \alpha, 5 \alpha$-diol were used in place of the data for a $1 \alpha, 5 \alpha$-diol. The close similarity of the observed and calculated δ_{C} values for the α - and the β-carbon atoms suggested that the $\Delta \delta^{g}$ values can be utilized for general application in polyhydroxy $5 \alpha, 14 \alpha$-steroids. In a structural study, precise agreement of the predicted δ_{C} values would not be expected since introduction of a single OH group has effects even on remote carbon atoms, whilst configurational changes in the OH group cause changes in the torsional angles ${ }^{6}$ which may affect the δ_{C} values. Other effects arising from the solvent used, concentration and temperature are also common. Thus, with this in mind, deviations of 2.5 ppm between the predicted and calculated δ_{C} values would be sufficient for adoption, or rejection, of a particular structure.

Results and Discussion

In steroidal alcohols the $\delta_{\mathbf{C}} s$ of the α-carbon and its β-carbon atoms would, upon hydroxy substitution of these positions, be expected to be affected by newly formed $\mathrm{OH} \ldots \mathrm{OH}$ and $\mathrm{OH} \cdots \mathrm{C}$ nonbonded interactions. If it is assumed that the
increments due to each type of glycol involved in the molecule have linearly independent contributions, within certain limits, on the chemical shifts of the relevant carbon atoms, the δ_{C} values will, also within limits, reflect the sum of the additivity relationships found in individual 1,2- and 1,3-glycols. For consecutive triols, the contribution can be regarded as the sum of those of three glycol types (two 1,2-diols and one 1,3-diol). For example, C-5 of the $3 \beta, 5 \alpha, 6 \beta, 7 \alpha$-tetrahydroxy steroid 11 was assumed to be influenced by one 1,3-trans (C-3, C-5), one 1,2-trans-diaxial (C-5, C-6) and one 1,3-syndiaxial (C-5, C-7) interactions.

General Procedure.-The procedure involves initial addition of the monohydroxy substituent effects ${ }^{1}$ to the δ_{C} values of 5α cholestane 1 , followed by application of the dihydroxy steroid

parameters described below. The androstane-type ring-D glycols were left for future study both because of differences in the nature of the steric interactions involved in ring D, and also because natural polyhydroxy $5 \alpha, 14 \alpha$-steroids are mostly 24-alkylated cholestane derivatives. ${ }^{4}$

Classification of Glycol Types.-In the original paper, ${ }^{2}$ the glycols were classified into five types and are expressed in the present study as A (1,2-diequatorial), B (1,2-axial-equatorial), C

Table 1 Parameters of the $\delta_{\mathbf{C}}$ s of 1,2- and 1,3-glycols in ppm

Glycol type	α-Carbon					
	Secondary ${ }^{\text {a }}$		Tertiary ${ }^{\text {a }}$		β-Carbon	
1,2-diequatorial	A	-4.1			A^{\prime}	-1.2
1,2-axial-equatorial	$\mathrm{B}_{1 \mathrm{a}}(\mathrm{a})$	-6.5				
	$\mathbf{B}_{1 b}(\mathrm{e})$	-5.5				
	$\mathrm{B}_{2 \mathrm{a}}(\mathrm{e})$	-4.3	$\mathrm{B}_{2 \mathrm{~b}}(\mathrm{a})$	-5.0		
1,2-trans-diaxial	C_{1}	-3.5	$\mathrm{B}_{26}(\mathrm{a}$		C^{\prime}	1.0
	$\mathrm{C}_{2} \mathrm{a}$	-2.0	$\mathrm{C}_{2 \mathrm{~b}}$	-2.0		
1,3-syndiaxial	D_{1}	8.0				
	$\mathrm{D}_{2 \mathrm{a}}$	7.0	$\mathrm{D}_{2 \mathrm{~b}}$	10.0		
	$\mathrm{D}_{3 \mathrm{a}}$	7.1 (C-15)	$\mathrm{D}_{3 \mathrm{~b}}$	4.0 (C-8)		
1,3-trans	$\mathrm{E}_{1 \mathrm{a}}(\mathrm{a})$	3.5			E^{\prime}	0.7
	$\mathrm{E}_{1 \mathrm{~b}}(\mathrm{e})$	2.0				
	$\mathrm{E}_{2 \mathrm{a}}(\mathrm{e})$	2.0	$\mathrm{E}_{2 \mathrm{~b}}(\mathrm{a})$	4.3		

${ }^{a}(a)=$ axial, $(\mathrm{e})=$ equatorial.
(1,2-trans diaxial), D (1,3-syndiaxial) and E (1,3-trans) (see Table 1). The types \mathbf{B} to E were divided into sub-type 1 (two secondary α-carbons) and sub-type 2 (secondary and tertiary α-carbons) since the glycols involving tertiary α-carbons are expected to be more resistant to skeletal deformation. The terms $\mathbf{B}_{2 \mathrm{a}}$ and $\mathbf{B}_{2 \mathrm{~b}}$ in Table 1, for example, indicate 1,2dihydroxy steroid parameters for a secondary α-carbon bearing an equatorial OH and a tertiary α-carbon bearing an axial OH , respectively (e.g. in a $4 \alpha, 5 \alpha$-diol).

For the 1,3-diols, there are 4 types (γ_{1} to γ_{4}) of arrangement, including D- $\left(\gamma_{1}\right)$ and E-type $\left(\gamma_{3}\right)$ glycols. Fortunately, the γ_{2}

and γ_{4} type glycols, which occur in the polyhydroxy steroids 7, 8, 16 and 17, are found to have little influence on the additivity. The $8 \beta, 15 \alpha$-glycol moiety in compound 17 resembles the γ_{4} type. The predicted values (see below), using the parameters in Table 1 alone, showed sufficient agreement so that these two arrangements $\left(\gamma_{2}\right.$ and $\left.\gamma_{4}\right)$ were decided to be unimportant for the additivity.

Dihydroxy Steroid Parameters.-The $\Delta \delta^{\mathrm{g}}$ s for the glycol types B_{1} and C_{1} have been reported for 4 glycol examples each. ${ }^{2}$ For the $A-, B_{2}-$, and C_{2}-type glycols, the $\Delta \delta^{g_{S}}$ were from two glycols each. In contrast, for the $D_{1}-, D_{2^{-}}, E_{1}$ and E_{2}-type glycols, the values derived are from only one example ($\mathrm{D}_{1}, 1 \alpha, 3 \alpha$-diol; D_{2}, $3 \alpha, 5 \alpha$-diol; $\mathrm{E}_{1}, 1 \alpha, 3 \beta$-diol; $\mathrm{E}_{2}, 3 \beta, 5 \alpha$-diol). For the C_{2} type glycol, the $\Delta \delta^{g_{S}}$ were derived from the $\delta_{C} s$ of $4 \beta, 5 \alpha-$ and $5 \alpha, 6 \beta$ -dihydroxy-cholestane. ${ }^{7}$ Four $\Delta \delta^{\mathrm{s}_{\mathrm{S}}}(-3.7$ to $-4.3 \mathrm{ppm})$ have been reported for the α-carbon of A-type glycols. They were averaged (-4.1 ppm) and defined as parameter A. Similarly, the $\Delta \delta^{g_{S}}$ for the α-carbon of B-, C-, D- and E-type glycols were averaged and defined as the corresponding parameters (see Table 1).

The $\Delta \delta^{\mathrm{s}_{s}}$ of β-carbons for various types of 1,2-and 1,3-glycols are less constant, but the magnitude is generally small except for that found for $\mathrm{C}-14$ of a $8 \beta, 15 \beta$-diol (C-14, -4.3 ppm , see Table 1). They can be uniformly disregarded when the β carbon lacks hydrogen atoms which have a gauche-interaction with the vicinal OH group. After application to several examples, the deviations of the β-carbons were found to be significant only in the case of A-, C- and E-type glycols. The deviations at the β carbons in A- and C-type glycols, presented as A^{\prime} and C^{\prime}, were defined as -1.2 and 1.0 ppm , respectively. In the E-type 1,3-
glycol, the outer and inner β-carbons, with a hydrogen atom gauche to the OH , showed increments of 0.6 to 1.2 ppm . The parameter E^{\prime} was defined, for simplicity and practical use, as 0.7 ppm (see Table 1).
δ_{1}-Hydroxy substituent effects, caused by 1,3-syn interaction of axial OH and angular methyl group, have been derived by Eggert et al. ${ }^{1}$ A change in the γ-trans effect of 1α - and $5 \alpha-\mathrm{OH}$ on C-19 was suggested for the 1,2-trans diaxial diols ($1 \alpha, 2 \beta$ - and $5 \alpha, 6 \beta$-diols) in which one hydroxy group is 1,3 -syndiaxial with $\mathrm{C}-19 .{ }^{2}$ This was also observed in the case of a $4 \beta, 5 \alpha$-glycol. ${ }^{7}$ Such deviations indicated that, for practical purposes, the complicated changes of substituent effects could be simplified in these cases ($1 \alpha, 2 \beta-, 4 \beta, 5 \alpha$ - and $5 \alpha, 6 \beta$-diols) by defining the δ_{1-} hydroxy substituent effect to C-19 as 1.0 ppm (see Table 2), instead of using the increments $3.8(2 \beta-\mathrm{OH}), 2.4(4 \beta-\mathrm{OH})$ and $3.5 \mathrm{ppm}(6 \beta-\mathrm{OH})$, derived for monohydroxy steroids. ${ }^{1}$

Supplemented Hydroxy Substituent Effects.-Many polyhydroxy steroids isolated from starfish (Echinoderms) bear an $8 \beta-\mathrm{OH}^{4}$ Prediction of the δ_{C} values of such compounds requires the substituent effects for an $8 \beta-\mathrm{OH}$ which were not recorded in the report of Eggert et al. ${ }^{1}$ Ergost-7-en- 3β-ol was converted into the 7α - and 7β-epoxides. Treatment of the minor 7β-epoxide with lithium aluminium hydride (LAH) afforded $3 \beta, 8 \beta$-dihydroxyergostane 3 , the δ_{C} signals for the side chain of which in its ${ }^{13} \mathrm{C}$ NMR spectrum were negated by subtracting the corresponding δ_{C} values for ergostane. The δ_{C} values assigned to the steroid nucleus were confirmed by HSQC (heteronuclear single quantum coherence) and HMBC (heteronuclear multiple bond correlation) spectroscopy which showed unequivocal correlations ($4 \beta-\mathrm{H}, \mathrm{C}-3, \mathrm{C}-5 ; 12 \beta-\mathrm{H}, \mathrm{C}-9, \mathrm{C}-11$, $\mathrm{C}-13, \mathrm{C}-14, \mathrm{C}-17$; 15-H2, C-13, C-14; 17-H, C-12, C-13, C-18). The derived $\alpha-, \beta$-, γ - and δ_{1}-substituent effects of an 8β-OH are given in Table 2. The substituent effects of 15β - and $16 \beta-\mathrm{OH}$ on cholestane, ${ }^{8,9}$ which are slightly different from those on androstane, ${ }^{1}$ were added. Several substituent effects of 5β steroids were taken from the literature 10 for the calculation of $3 \beta, 5 \beta, 6 \alpha$-trihydroxycholestane 15 . The pseudo-1,3-syndiaxial interaction due to the $8 \beta, 15 \beta$-diol was determined and added independently as the D_{3} parameters in Table 1 . The δ_{C} values of an $8 \beta, 15 \beta$-diol are not available, so that the values are derived from the data of the $3 \beta, 6 \alpha, 8 \beta, 15 \beta$-tetrahydroxy steroid 4 (C-8, $\left.\delta_{\mathrm{C}} 76.6 \mathrm{ppm} ; \mathrm{C}-14, \delta_{\mathrm{C}} 61.7 \mathrm{ppm} ; \mathrm{C}-15, \delta_{\mathrm{C}} 70.1 \mathrm{ppm}\right) .{ }^{11}$ Subtraction of the calculated δ_{C} values of $4\left(\mathrm{C}-8, \delta_{\mathrm{C}} 68.3 \mathrm{ppm}\right.$; $\left.\mathrm{C}-14, \delta_{\mathrm{C}} 66.0 \mathrm{ppm} ; \mathrm{C}-15, \delta_{\mathrm{C}} 63.0 \mathrm{ppm}\right)$ using the monohydroxy steroid substituent effect gave the parameters -4.3 ppm for C-14 ($\mathrm{D}_{3}{ }^{\prime}$) and 7.1 ppm for $\mathrm{C}-15\left(\mathrm{D}_{3 \mathrm{a}}\right)$. The deviation found for $\mathrm{C}-8$ (8.3 ppm) was regarded as the sum of $\mathrm{D}_{3 \mathrm{~b}}$ and $\mathrm{E}_{2 \mathrm{~b}}(4.3 \mathrm{ppm})$ so that the parameter $\mathrm{D}_{\mathbf{3 b}}$ for $\mathrm{C}-8$ was defined as 4.0 ppm . These

Table 2 Hydroxy substituent effects in ppm ${ }^{a}$

OH position	α-Carbon	β-Carbon	γ-Carbon	δ-Carbon
8β	38.0	$7.7(7) ; 2.2(9)$	$-3.4(6) ; 0.6(10) ;$	$1.5(18) ; 0.9(19)$
		$3.5(14)$	$-2.4(11) ; 0.8(13) ;-4.8(15)$	
$15 \beta^{8}$	43.6	$5.8(14) ; 10.5(16)$	$-4.0(8) ;-0.5(13) ; 0.1(17)$	
$16 \beta^{9}$	42.5	$13.6(15) ; 5.7(17)$	$-1.8(14) ; 0(13) ;-5.5(20)$	
$3 \beta(5 \beta-\mathrm{H})^{10}$	40.0	$6.5(2) ; 6.3(4)$	$-7.7(1) ;-7.2(5)$	
$5 \beta^{7}$	29.8	$5.3(4) ; 8.9(6)$	$-6.2(1) ;-5.3(3) ; 2.1(7) ;$	
		$4.8(10)$	$2.7(9) ;-7.2(19)$	
$6 \alpha(5 \beta-\mathrm{H})^{27}$	40.6	$6.3(5) ; 8.6(7)$	$-6.2(4) ;-0.8(8) ; 1.3(10)$	$1.0(19)$
$1 \alpha, 2 \beta ; 4 \beta, 5 \alpha ; 5 \alpha, 6 \beta$				

${ }^{a}$ Carbon atom numbers presented in parentheses.
D_{3} values are quite different from those assigned for D_{1} and D_{2} type 1,3-glycols in the six-membered ring.

Application ot Polyhydroxy Steroids.-The parameters thus obtained were applied to 14 different polyhydroxy $5 \alpha, 14 \alpha$ steroids 6-19 (see Fig. 1). The calculated δ_{C} values of their α-, β - and γ-carbons are tabulated in Table 3. The first number in each item is the predicted δ_{C} value. The δ_{C} values derived from the addition of the monohydroxy steroid substituent effect and the dihydroxy steroid parameters are shown in the first set of parentheses. The $\Delta \delta\left(\delta_{\text {observed }}-\delta_{\text {calculated }}\right)$ values are shown in the next set of parentheses. The δ_{c} values of β - and γ-carbons which could be derived by monohydroxy substituent effects alone are presented only with $\Delta \delta$ in parentheses.

The derived $\delta_{\mathrm{C}} s$ are the predicted values in CDCl_{3} which were used in the two original reports. ${ }^{1,2}$ However, many of the spectra of the reference compounds 6-19 are recorded either in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ or $\mathrm{CD}_{3} \mathrm{OD}$ since polar steroids are insoluble in CDCl_{3}. Solvent molecules affect the $\delta_{C} s$ through coordination with the OH group, or through conformational changes by hydrogen bonding. The rigidity of the steroid framework minimizes the conformational changes, compared with other types of compounds. In the differences found in the δ_{C} data of simple hydroxy steroids (3β-hydroxycholestane, 3α-hydroxycoprostane, $3 \beta, 6 \beta$-dihydroxycholestane, $3 \beta, 6 \alpha$-dihydroxycholestane), the largest difference was observed between the δ_{C} data recorded in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ and those in $\mathrm{CDCl}_{3}{ }^{10}$ However, the differences are generally less than 1.0 ppm and fall within the expected permissible $\Delta \delta \pm 2.5 \mathrm{ppm}$. When most of the calculated values fall within this range, the prediction can be regarded as acceptable.

The $\delta_{C} s$ of the synthetic $3 \beta, 4 \beta, 5 \alpha$-trihydroxy steroid $6{ }^{12}$ were calculated using the three glycol types, namely, one axial equatorial (C-3, C-4; B_{1}), one 1,2-trans diaxial (C-4, C-5; C_{2}) and one 1,3-trans glycol ($\mathrm{C}-3, \mathrm{C}-5 ; \mathrm{E}_{2}$) interaction. The predicted value for $\mathrm{C}-1(29.9 \mathrm{ppm})$ is the total of the δ_{C} value of compound 1 (38.8 ppm) plus the γ-effect of the $3 \beta-\mathrm{OH}(-1.7$ $\mathrm{ppm})$ and $5 \alpha-\mathrm{OH}(-7.2 \mathrm{ppm}) .{ }^{1}$ On the other hand, the predicted value for C-4 ($78.9 \mathrm{ppm}, \Delta \delta 0.3 \mathrm{ppm}$) is derived from such an addition [29.2 ppm plus α - and β-substituent effects $(4 \alpha-\mathrm{OH}$, $43.2 \mathrm{ppm} ; 3 \beta-\mathrm{OH}, 9.1 \mathrm{ppm} ; 5 \alpha-\mathrm{OH}, 5.2 \mathrm{ppm})]$ plus dihydroxy parameters ($\mathrm{B}_{1 \mathrm{a}},-6.5 \mathrm{ppm} ; \mathrm{C}_{2 \mathrm{a}},-2.0 \mathrm{ppm} ; \mathrm{E}^{\prime}, 0.7 \mathrm{ppm}$). Other δ_{C} values were derived in the same way and afforded the predicted δ_{C} values which agreed well with actual values.

Compounds 7 and 8, isolated from soft corals (Sinularia numerosa and Sarcophyton glaucum), ${ }^{3 a, 13}$ are $1 \beta, 3 \beta, 5 \alpha$-trihydroxysteroids with an additional $6 \beta-\mathrm{OH}$ in 8 . The calculated values agreed generally within $\pm 2.0 \mathrm{ppm}$, except for the large value ($\Delta \delta-3.4 \mathrm{ppm}$) for $\mathrm{C}-5$ of compound 7 . When the parameters were not applied, the $\Delta \delta$ became 5.2 ppm . For the $1 \alpha, 3 \beta, 5 \alpha, 6 \beta$-tetrahydroxy steroid 9 , isolated from Sinularia sp . soft corals, ${ }^{9,13}$ the predicted δ_{C} values using the dihydroxy parameter ($\mathrm{C}-1$ to $\mathrm{C}-7$) and those using monohydroxy
substituent effects alone ($\mathrm{C}-8$ to $\mathrm{C}-10$ and $\mathrm{C}-19$) agreed well. Two E parameters applied for $C-3$ afforded an improved predicted δ_{C} value ($\Delta \delta 1.6 \mathrm{ppm}$). The $3 \beta, 5 \alpha, 6 \beta, 7 \beta$-tetrahydroxy steroid 10 was isolated from a soft coral Anthelia glauca. ${ }^{3 d}$ In this report the 7β-monohydroxy substituent effect was applied to the known compound $3 \beta, 5 \alpha, 6 \beta$-trihydroxycholestane and the δ_{C} values were derived for $\mathrm{C}-8, \mathrm{C}-9$ and $\mathrm{C}-14$. When the dihydroxy steroid parameters are applied to compound 10, they gave reasonably close δ_{C} values for α-carbons at C-5, C-6 and $\mathrm{C}-7(\Delta \delta-0.6,-1.0$ and $-0.3 \mathrm{ppm})$. For the $7 \alpha-\mathrm{OH}$ isomer 11 , which was isolated from the starfish Luidia maculata, ${ }^{14}$ the calculated values agreed well with those found except for C-6. The magnitude of the error ($\Delta \delta-3.4 \mathrm{ppm}$) is, however, similar to those generated by the monohydroxy substituent effect alone (C-1, $3.7 \mathrm{ppm} ; \mathrm{C}-9,3.6 \mathrm{ppm}$). In the $3 \beta, 5 \alpha$-dihydroxy steroids (6-11), the δ_{C} values of $C-1$ show in common significantly large $\Delta \delta$ values. The predicted δ_{C} value for C -1 of $3 \beta, 5 \alpha$-dihydroxycholestane is identical with that in compound 6 (29.9 ppm) but the actual value is $32.0 \mathrm{ppm} .{ }^{15}$ Apparently, there is an unidentified change of steric and electric field effects when the 3β and 5α positions are simultaneously substituted. It seems proper in such compounds to calculate the $\delta_{C} s$ from the $\delta_{C} s$ of $3 \beta, 5 \alpha$-dihydroxycholestane, or to adopt the temporary value 41.0 ppm , instead of 38.8 ppm , for the $\mathrm{C}-1$ of cholestane.

Compound 12 is a $2 \beta, 3 \beta, 4 \beta$-trihydroxypregnane-type steroid isolated from a forest tree Trichilia schomburgkii. ${ }^{16}$ The ${ }^{13} \mathrm{C}$ NMR data were reported only for the 3-monoacetate derivative so that the data for compound 12 (Fig. 1) were estimated by subtracting similar acetylation shifts observed in the $6 \beta, 7 \beta$-diol 10 and its 7 -monoacetate (β-equatorial OAc, β-axial OH). ${ }^{17}$ The δ_{1}-hydroxy substituent effects of 2β - and $4 \beta-\mathrm{OH}$ were applied using the original data of Eggert et al. ${ }^{1}$
For the C_{2}-type $4 \beta, 5 \alpha$-diol and $5 \alpha, 6 \beta$-diol in which one OH (5α) has a γ-trans effect on $\mathrm{C}-19$ and another one $(4 \beta$ or $6 \beta)$ is 1,3-syndiaxial to C -19, the δ_{1}-hydroxy substituent effect to C -19 was defined as 1.0 ppm . In the $1 \alpha, 2 \beta$-diol the same change makes the $\Delta \delta$ for C-19 1.5 ppm , instead of $3.0 \mathrm{ppm} .^{2}$ With such alteration, the $\Delta \delta s$ observed for $\mathrm{C}-19$ are generally small in compounds 6-19. In most cases they are less than $\pm 1.5 \mathrm{ppm}$, except for compound $10(\Delta \delta-2.1 \mathrm{ppm})$.

Compound 13 is a 14β-steroid isolated from the marine sponge Xestospongia bergguistia. ${ }^{18}$ The substituent effects were assumed to be similar to those of 14α-cholestane as regards C -1 to $\mathrm{C}-6, \mathrm{C}-10$ and $\mathrm{C}-19$. The δ_{C} values predicted on this assumption show sufficient agreement with those observed.
For the $1 \alpha, 3 \beta, 6 \beta, 11 \alpha$-tetrahydroxy 4α-methyl steroid 14 , isolated from the sponge Pseudopterogorgia acerosa, ${ }^{19}$ the calculation was based on the δ_{C} values of 3β-hydroxy- 4α methylcholestane $5 .{ }^{20}$ The $\delta_{\mathrm{C}} \mathrm{s}$ of $\mathrm{C}-2$ to $\mathrm{C}-5$ of compound 5 include interaction of two equatorial substituents, the $3 \beta-\mathrm{OH}$ and the $4 \alpha-\mathrm{Me}$, a situation which is similar in nature to a $1,2-$ diequatorial type-A glycol. Application of 1α - and $6 \beta-\mathrm{OH}$ substituent effects alone gives the δ_{C} values 71.6 ppm for $\mathrm{C}-1$ and
Table $3{ }^{13} \mathrm{C}$ NMR chemical shifts of compounds 1,2,3 and 5 in CDCl_{3} and calculated chemical shifts and deviations of compounds 6-19 in ppm

Carbons	1^{10}	2^{10}	3	$5{ }^{19}$	6	7	8
1	38.8	37.7	38.6	36.9	29.9 (2.1)	$72.0\left(70.0+\mathrm{E}_{2 \mathrm{a}}(1.2)\right.$	$72.0\left(70.0+\mathrm{E}_{2 \mathrm{a}}\right.$) (1.8)
2	22.3	21.4	32.2	31.2	27.0 (26.3 + E^{\prime}) (-0.2)	$44.0\left(42.6+\mathrm{E}^{\prime} \mathrm{E}^{\prime}\right)(-2.4)$	$44.0\left(42.6+\mathrm{E}^{\prime} \mathrm{E}^{\prime}\right)(0.1)$
3	26.9	$27.1{ }^{\text {a }}$	70.9	76.6	68.6 (72.1 + $\left.\mathrm{B}_{1 \mathrm{~b}} \mathrm{E}_{2 \mathrm{a}}\right)(0.6)$	$64.9\left(62.9+\mathrm{E}_{2 \mathrm{~s}}\right)(1.5)$	$64.9\left(62.9+\mathrm{E}_{2 \mathrm{a}}\right)(0.4)$
4	29.2	$27.3{ }^{\text {a }}$	39.2	39.4	$78.9\left(86.7+\mathrm{B}_{1 \mathrm{a}} \mathrm{C}_{2 \mathrm{a}} \mathrm{E}^{\prime}\right)(0.3)$	$44.2\left(43.5+\mathrm{E}^{\prime}\right)(-2.0)$	$42.1\left(40.4+\mathrm{C}^{\prime} \mathrm{E}^{\prime} \mathrm{E}^{\prime}(1.1)\right.$
5	47.1	43.8	46.3	51.1	$76.2\left(73.9+\mathrm{C}_{25} \mathrm{E}_{2 \mathrm{~b}}\right)(0.3)$	$78.6\left(70.0+\mathrm{E}_{2 \mathrm{~b}} \mathrm{E}_{2 \mathrm{~b}}\right)(-3.4)$	79.3 (72.7 $\left.+\mathrm{C}_{2 \mathrm{~b}} \mathrm{E}_{2 \mathrm{~b}} \mathrm{E}_{2 \mathrm{~b}}\right)(-2.3)$
6	29.2	$27.6{ }^{\text {a }}$	25.8	24.2	$33.2\left(31.5+C^{\prime} E^{\prime}\right)(-0.8)$	35.3 (34.6 + E^{\prime}) (-0.5)	76.6 (77.9 + $\mathrm{C}_{2 \mathrm{a}} \mathrm{E}^{\prime}$) (0.3)
7	32.2	26.6	40.1	32.2	26.3 (0.5)	26.3 (1.4)	$34.7\left(33.7+\mathrm{C}^{\prime}\right)(1.0)$
8	35.6	36.0	73.8	36.1			30.3 (1.6)
9	54.9	40.6	56.9	54.7	46.2 (1.5)	$46.5(-1.5)$	46.5 (0.6)
10	36.3	35.4	36.4	34.9	$39.2(-0.1)$	$45.5(-1.5)$	45.5 (-0.6)
11	20.9	20.9	19.2	21.1			
19	12.2	24.3	13.2	13.4	$17.1(-0.9)$	10.6 (1.3)	$11.6(-0.8)$
	9				10	11	12
1	73.1	. 6 D	$\left.\mathrm{E}_{12}\right)(2$		29.9 (3.4)	29.9 (3.7)	43.5 (-0.1)
2	39.6	+	E') (0.8)		32.3 (31.6 + E^{\prime}) (0.1)	32.3 (31.6 + $\left.\mathrm{E}^{\prime}\right)(-0.6)$	$73.5\left(72.0+\mathrm{B}_{1 \mathrm{a}} \mathrm{D}_{1}\right)(-1.1)$
3	62.4	+ ${ }^{\text {E }}$	$\mathrm{E}_{2 \mathrm{a}}$) $(1$		$67.1\left(65.1+\mathrm{E}_{29}\right)(-0.1)$	$67.1\left(65.1+\mathrm{E}_{22}\right)(0.6)$	$74.3\left(85.3+\mathrm{B}_{1 \mathrm{a}} \mathrm{B}_{1 \mathrm{~b}}\right)(-3.0)$
4	42.8	+ + C	E'E') (0,		$42.8\left(40.4+\mathrm{C}^{\prime \prime} \mathrm{E}^{\prime} \mathrm{E}^{\prime}\right)(0.1)$	$42.1\left(40.4+\mathrm{C}^{\prime} \mathrm{E}^{\prime}\right)(-0.6)$	$77.7\left(76.2+\mathrm{B}_{1 \mathrm{a}} \mathrm{D}_{1}\right)(-1.1)$
5	77.8	. $5+$	${ }_{2} \mathrm{D}_{2} \mathrm{E}_{2}$	(0.6)	$77.2\left(70.6+\mathrm{C}_{2 \mathrm{~b}} \mathrm{E}_{2 \mathrm{~b}} \mathrm{E}_{2 \mathrm{~b}}\right)(-0.6)$	$78.0\left(65.7+\mathrm{C}_{2 \mathrm{~b}} \mathrm{D}_{2 \mathrm{~b}} \mathrm{E}_{2 \mathrm{bb}}\right)(0.2)$	47.9 (1.6)
6	76.6	+ $9+$	$\left.\mathrm{E}^{\prime}\right)(-$		$80.3\left(87.4+\mathrm{B}_{1 \mathrm{a}} \mathrm{C}_{2 \mathrm{a}} \mathrm{E}^{\prime} \mathrm{E}^{\prime}\right)(-1.0)$	$80.7\left(85.5+\mathrm{C}_{1} \mathrm{C}_{2 \mathrm{a}} \mathrm{E}^{\prime}\right)(-3.4)$	26.1 (-0.7)
7	34.7	+ +	(1.0)		$73.2\left(76.7+\mathrm{B}_{1 \mathrm{~b}} \mathrm{E}_{2 \mathrm{a}}\right)(-0.3)$	74.2 (69.7 $\left.+\mathrm{C}_{1} \mathrm{C}^{\prime} \mathrm{D}_{2 \mathrm{a}}\right)(0.6)$	
8	30.3				39.0 (38.3 + E^{\prime}) (0.4)	33.9 (2.2)	
9	38.5				44.4 (0.2)	37.7 (3.6)	
10	43.0				39.3 (-0.8)	39.3 (0.6)	$35.9(-0.7)$
11 19	17.8	0.1)			17.1 (0.3)	17.1 (-2.1)	17.1 (0)

Table 3 (contd)

	13	14	15	16
1	$75.3\left(78.8+\mathrm{B}_{1 \mathrm{~b}} \mathrm{E}_{1 \mathrm{~b}}\right)(1.7)$	$75.1\left(71.6+\mathrm{E}_{1 \mathrm{a}}\right)(-0.4)$	23.8 (2.6)	37.1 (2.6)
2	$76.5\left(85.8+\mathrm{B}_{1 \mathrm{a}} \mathrm{C}_{1} \mathrm{E}^{\prime}\right)(-0.3)$	$38.5\left(37.8+\mathrm{E}^{\prime}\right)(-1.4)$	27.9 (0.2)	$26.3(-0.1)$
3	$71.3\left(71.3+\mathrm{C}_{1} \mathrm{E}_{1 \mathrm{a}}\right)(-0.7)$	$71.9\left(69.9+\mathrm{E}_{16}\right)(-0.4)$	$68.8\left(61.8+\mathrm{D}_{2 \mathrm{a}}\right)(-1.7)$	$72.8\left(78.3+\mathrm{B}_{1 \mathrm{~b}}\right)(0.9)$
4	$25.9\left(24.2+\mathrm{C}^{\prime} \mathrm{E}^{\prime}\right)(0.4)$	$37.0\left(36.3+\mathrm{E}^{\prime}\right)(-0.8)$	32.7 (-1.9)	$68.6\left(75.1+\mathrm{B}_{1_{\mathrm{a}}}\right)(0.5)$
5	$41.7\left(42.9+\mathrm{A}^{\prime}\right)(0.3)$	45.7 (1.0)	$78.6\left(72.7+\mathrm{AD}_{2 \mathrm{~b}}\right)(-0.1)$	$55.3\left(54.6+\mathrm{E}^{\prime}\right)(2.1)$
6	$75.4(79.5+\mathrm{A})(-0.4)$	$67.5(-0.7)$	$73.0(77.1+\mathrm{A})(-1.3)$	$65.5\left(63.5+\mathrm{E}_{2 \mathrm{a}}\right)(-0.7)$
7		39.6 (0.4)	36.1 (37.3 + A^{\prime}) (-0.8)	$50.1\left(49.4+\mathrm{E}^{\prime}\right)(-)^{b}$
8		$30.2(-1.2)$	35.2 (-1.0)	$76.5\left(68.2+\mathrm{D}_{3 \mathrm{~b}} \mathrm{E}_{2 \mathrm{~b}}\right)(0.7)$
9		53.1 (0.2)	43.3 (0)	57.1 (1.4)
10	42.8 (0.7)	40.6 (0.8)	41.5 (0.1)	37.4 (0.8)
11		69.4 (-2.0)		18.5 (0.4)
19	9.2 (0.8)	$17.6(-1.0)$	$17.1(-0.2)$	15.5 (1.4)
		$51.7(-1.0, \mathrm{C}-12)$		
	17	18	19	
1	37.1 (2.8)	37.1 (2.5)	37.1 (3.6)	
2	26.3 (0)	$31.6(-0.1)$	$26.3(0.1)$	
3	$72.8\left(78.3+\mathrm{B}_{1 \mathrm{~b}}\right)(0.8)$	71.3 (1.0)	$72.8\left(78.3+\mathrm{B}_{1 \mathrm{~b}}\right)(-0.1)$	
4	$68.6\left(75.1+\mathrm{B}_{1 \mathrm{a}}\right)(0.6)$	31.9 (0.4)	$79.9\left(78.4+\mathrm{B}_{1 \mathrm{a}} \mathrm{D}_{1}\right)(-2.5)$	
5	$55.3\left(54.6+\mathrm{E}^{\prime}\right)(1.9)$	$44.4\left(43.7+\mathrm{E}^{\prime}\right)(0.1)$	42.7 (2.1)	
6	$65.5\left(63.5+\mathrm{E}_{2 \mathrm{a}}\right)(-0.8)$	$70.7\left(74.2+\mathrm{B}_{1 \mathrm{~b}} \mathrm{E}_{2 \mathrm{a}}\right)(-1.8)$	$86.1\left(73.6+\mathrm{C}_{1} \mathrm{C}^{\prime} \mathrm{D}_{1} \mathrm{D}_{2 \mathrm{a}}\right)(-5.2)$	
7	$50.1\left(49.4+\mathrm{E}^{\prime}\right)(0.4)$	$77.6\left(85.4+\mathrm{B}_{1 \mathrm{a}} \mathrm{C}_{2 \mathrm{a}} \mathrm{E}^{\prime}\right)(-1.1)$	$77.8\left(83.3+\mathrm{C}_{1} \mathrm{C}_{2 \mathrm{a}}\right)(-5.1)$	
8	$76.1\left(71.8+\mathrm{E}_{2 \mathrm{~b}}\right)(-0.1)$	$78.2\left(75.9+\mathrm{C}_{2 \mathrm{~b}} \mathrm{E}_{2 \mathrm{~b}}\right)(-0.5)$	$80.3\left(68.3+\mathrm{C}_{2 \mathrm{~b}} \mathrm{D}_{2 \mathrm{~b}} \mathrm{D}_{3 \mathrm{~b}}\right)(-2.5)$	
9	57.1 (0.3)	48.6 (2.6)	48.6 (2.0)	
10	37.4 (0.6)	37.5 (0.3)	36.8 (0.1)	
11	18.5 (0.4)	18.5 (0.8)	$18.5(-0.3)$	
19	15.5 (1.5)	13.1 (0.8)	$19.0(-0.1)$	

${ }^{a}$ Assignments may be interchanged. ${ }^{b} \delta_{\mathrm{C}}$ Value not reported.

Fig. 1 Partial structures of compounds 6-20 and observed $\delta_{C} S(\mathrm{ppm})$ for compounds 6-19. ${ }^{a}$ In $\mathrm{CD}_{3} \mathrm{OD} .{ }^{b}$ In $\mathrm{CDCl}_{3} .{ }^{c}$ In $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$. ${ }^{d}$ Assignments interchangeable. ${ }^{e}$ Estimated from the δ_{C} values of the 3 -monoacetate by subtraction of the acetylation shift. ${ }^{f}$ Not reported.
69.9 ppm for $\mathrm{C}-3$. When the E_{1} parameter was applied, it gave the close δ_{C} values, 75.1 ppm for $\mathrm{C}-1$ and 71.9 ppm for $\mathrm{C}-3$ ($\Delta \delta$ each $-0.4 \mathrm{ppm})$. The 4α-methyl and $6 \beta-\mathrm{OH}$ represent the arrangement which is similar to a γ_{4}-type 1,3-trans glycol. This causes little effect and the δ_{C} value of C-6 (66.8 ppm) is close to that derived by 6β-monohydroxy substituent effect alone (67.5 ppm).

The $\Delta \delta$ value becomes larger when the E^{\prime} parameter was applied to $\mathrm{C}-2$ and $\mathrm{C}-4$ in compound 14 and for $\mathrm{C}-2, \mathrm{C}-4, \mathrm{C}-6$ of compound 7 and $\mathrm{C}-2$ of compound 11 . With the exception of these cases, incorporation of E^{\prime} parameters improved the predicted δ_{C} values.

The $3 \beta, 5 \beta, 6 \alpha$-trihydroxy steroid 15 , isolated from a Sclerophytum sp. soft coral, ${ }^{21}$ was included as a 5β-steroid example. Addition of the monohydroxy substituent effects (3β-, 5β - and $6 \alpha-\mathrm{OH},{ }^{10}$ Table 2) on the δ_{C} values of 5β-cholestane 2, followed by application of the dihydroxy steroid parameters afforded close δ_{C} values, except for $\mathrm{C}-1$ ($\Delta \delta 2.6 \mathrm{ppm}$).

For the three typical 8β-hydroxy steroids $16,{ }^{22} 17^{23}$ and $18,{ }^{24}$ isolated from starfish, the additivity relationships afforded values close to those observed, except for $\mathrm{C}-1$, which showed in common smaller values ($2.5-2.8 \mathrm{ppm}$). The $\Delta \delta \mathrm{s}$ for C-6, C-7 and C-8 of compounds 16-18 indicate that incorporation of B_{1}, C_{2}, E_{2} and D_{3} parameters is appropriate in such compounds having a hydroxylated C -ring. However, it caused exceptionally large $\Delta \delta \mathrm{s}$ (C-6, $-5.2 \mathrm{ppm} ; \mathrm{C}-7,-5.1 \mathrm{ppm}$) for the heptaol 19. ${ }^{25}$ In this case the $\mathrm{C}-19$ and $8 \beta-\mathrm{OH}$ each undergo three $1,3-$ syndiaxial interactions, together with an additional one between the $8 \beta-\mathrm{OH}$ and the $15 \beta-\mathrm{OH}$. Probably the steroid nucleus and the glycol moieties involved are deformed excessively, resulting in various unidentified steric and electric field effects. In such exceptional cases, the dihydroxy steroid parameters cannot be linearly applied.

When the δ_{C} data are available for compounds which lack one OH group of the polyhydroxy steroid in question, application of the monohydroxy substituent effect and the dihydroxy steroid parameters corresponding to the newly introduced interaction gives the predicted δ_{C} values in the same way. This method sometimes gives better results, e.g. for C-1 of compounds 6-11 and compounds 16-19, but in most cases the improvements are modest, as compared with those starting from the $\delta_{C} s$ of 5α-cholestane 1 .

The $\Delta \delta$ values observed for the 14 polyhydroxy steroid indicate that the dihydroxy steroid parameters, derived from the $\Delta \delta^{\delta_{S}}$ reported by VanAntwerp et al., ${ }^{2}$ are generally applicable. In most cases, the $\Delta \delta$ s fall well within a range of $\pm 2.5 \mathrm{ppm}$ and they are useful for prediction, and interpretation, of the δ_{C} values of polyhydroxy $5 \alpha, 14 \alpha$-steroids if there is no severe steric hindrance as found in compound 19. For the synthetic compound $3 \alpha, 4 \alpha, 5 \alpha-$ trihydroxycholestane $\mathbf{2 0}{ }^{26}$ they give the predicted δ_{C} values 72.7 $\operatorname{ppm}\left(82.5+\mathrm{B}_{1 \mathrm{~b}} \mathrm{~B}_{2 \mathrm{a}}\right)$ for the $\mathrm{C}-4$ and $77.4 \mathrm{ppm}\left(72.4+\mathrm{B}_{2 \mathrm{~b}} \mathbf{D}_{2 \mathrm{~b}}\right)$ for $\mathrm{C}-5$, indicating that the assignments (C-4, 77.0; $\mathrm{C}-5,71.1$ ppm) reported by addition of the monohydroxy substituent effects should be reversed. The results observed for the 4α methyl steroid 14 and the 5β-hydroxy steroid 15 suggest that these sets of parameters are applicable to other types of steroids, if their monohydroxy substituent effects are available.

Experimental

General Details.-M.p. is determined on a Kofler hot stage and are uncorrected. The optical rotation was determined on a JASCO DIP-370 digital polarimeter and is recorded in units of $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$. NMR spectra were recorded on a JEOL JNM GX 400 spectrometer at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and at $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ with $\mathrm{CHCl}_{3}\left(\delta_{\mathrm{H}} 7.26 \mathrm{ppm}\right)$ and $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\left(\delta_{\mathrm{C}} 135.5 \mathrm{ppm}\right)$ as internal standards. J Values are given in Hz . Mass spectra were determined on a JEOL JMS D 300 mass spectrometer. Flash
column chromatography was performed on silica gel (Wako gel C-300, 200-300 mesh, Wako Pure Chemical industries).

24-Methylcholestane-3 $\beta, 8 \beta$-diol (or Ergostane-3 $\beta, 8 \beta$-diol) 3.-A mixture of ergost-7-en-3 β-ol acetate (700 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(14 \mathrm{~cm}^{3}\right)$ and $\mathrm{NaHCO}_{3}(400 \mathrm{mg})$ was treated with m-chloroperbenzoic acid (393 mg) and stirred at room temp. for 2 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 5% aqueous NaOH , water, and saturated aqueous NaCl . Preliminary silica gel column chromatography of the mixture with hexane- CHCl_{3} ($1: 2$) showed that the major 7α-epoxide had partly decomposed, probably due to the residual HCl in the solvent. It was chromatographed with ethyl acetate-hexane (1:19) giving a mixture $(39 \mathrm{mg})$ containing the less polar 7β-epoxide. The mixture in THF ($1.5 \mathrm{~cm}^{3}$) was treated with LAH (21 mg) under reflux for 5 h . The mixture was diluted with ethyl acetate and filtered through cotton and then washed with 5% aqueous HCl , water, and saturated aqueous NaCl . The mixture was chromatographed over silica gel eluting with ethyl acetatebenzene (1:9) giving the less polar $3 \beta, 8 \beta$-diol 3 (19.8 mg , colourless needles, m.p. $110-112^{\circ} \mathrm{C}$ (from MeOH), $[\alpha]_{\mathrm{D}}+19$ (c 1.98 in CHCl_{3}); $\delta_{\mathrm{H}}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 0.82,0.83,0.88$ (each $3 \mathrm{H}, \mathrm{d}, J$ $7.0,26-, 27-$ and $\left.28-\mathrm{CH}_{3}\right) 1.01\left(3 \mathrm{H}, \mathrm{d}, J 6.5,21-\mathrm{CH}_{3}\right), 1.23(3 \mathrm{H}$, $\left.\mathrm{s}, 18-\mathrm{CH}_{3}\right), 1.31\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right)$ and $3.94(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.77\left(3 \mathrm{H}, \mathrm{d}, J 7.0,28-\mathrm{CH}_{3}\right), 0.78(3 \mathrm{H}, \mathrm{d}, J 7.0$, $\left.27-\mathrm{CH}_{3}\right), 0.85\left(3 \mathrm{H}, \mathrm{d}, J 7.0,26-\mathrm{CH}_{3}\right), 0.88(3 \mathrm{H}, \mathrm{d}, J 6.5$, $\left.21-\mathrm{CH}_{3}\right), 0.92\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.97\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right)$ and 3.59 $(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 38.6(\mathrm{C}-1), 32.2(\mathrm{C}-2), 70.9(\mathrm{C}-3)$, 39.2 (C-4), 46.3 (C-5), 25.8 (C-6), 40.1 (C-7), 73.8 (C-8), 56.9 (C-9), 36.4 (C-10), 19.2 (C-11), 41.9 (C-12), 43.7 (C-13), 60.2 (C-14), 19.6 (C-15), 28.3 (C-16), 57.1 (C-17), 14.0 (C-18), 13.2 (C-19), 36.0 (C-20), 19.0 (C-21), 33.9 (C-22), 31.0 (C-23), 39.4 (C-24), 31.8 (C-25), 17.8 (C-26), 20.7 (C-27) and 15.7 (C-28); m / z (EI) $418\left(\mathrm{M}^{+}\right), 403,401,400,385,305,289,273,271,255$ and 235; HRMS/EI (Found: $\mathbf{M}^{+}, 418.3803$. Calc. for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{2}: M$, 418.3810).

References

1 H. Eggert, C. L. VanAntwerp, N. S. Bhacca and C. Djerassi, J. Org. Chem., 1976, 41, 71; J. Org. Chem., 1976, 41, 4051.
2 C. L. VanAntwerp, H. Eggert, G. D. Meakins, J. O. Miners and C. Djerassi, J. Org. Chem., 1977, 42, 789.

3 (a) M. Kobayashi, T. Hayashi, F. Nakajima and H. Mitsuhashi, Steroids, 1979, 34, 285; (b) Y. Yamada, S. Suzuki, K. Iguchi, H. Kikuchi, Y. Tsukitani, H, Horiai and H. Nakanishi, Chem. Pharm. Bull., 1980, 28, 473; (c) N. Fusetani, S. Matsunaga and S. Konosu, Tetrahedron Lett., 1981, 22, 1985; (d) U. Sjostrand, L. Bohlin, L. Fisher, M. Colin and C. Djerassi, Steroids, 1981, 38, 347.

4 M. V. D'Auria, L. Minale and R. Riccio, Chem. Rev., 1993, 93, 1839 and references cited therein.
5 M. Kobayashi, K. M. C. A. Rao, M. M. Krishna and V. Anjaneyulu, J. Chem. Res., 1994, (S), 180.

6 G. M. Schwenzer, J. Org. Chem., 1978, 43, 1079.
7 J. M. Coxon and J. R. Gibson, Aust. J. Chem., 1981, 34, 1451.
8 M. Kobayashi, M. M. Krishna, B. Haribabu and V. Anjaneyulu, Chem. Pharm. Bull., 1993, 41, 87.
9 M. Kobayashi, M. M. Krishna and V. Anjaneyulu, Chem. Pharm. Bull., 1992, 40, 2845.
10 J. W. Blunt and J. B. Stothers, Org. Magn. Reson., 1977, 9, 439.
11 L. Minale, C. Pizza, F. Zollo and R. Riccio, J. Nat. Prod., 1983, 46, 736.
12 M. V. D'Auria, R. Riccio, E. Uriarte, L. Minale, J. Tanaka and T. Higa, J. Org. Chem., 1989, 54, 234.

13 J. Su, X. Yu, L. Zeng and T. C. W. Mak, J. Nat. Prod., 1989, 52, 934.
14 L. Minale, C. Pizza, R. Riccio, O. S. Greco, F. Zollo, J. Pusset and J. L. Menou, J. Nat. Prod., 1984, 47, 784.

15 C. Konno and H. Hikino, Tetrahedron, 1976, 32, 325.
16 W. F. Tinto, P. K. Jagessar, P. Ketwaru, W. F. Reynolds and S. McLean, J. Nat. Prod., 1991, 54, 972.

17 I. Kitagawa, M. Kobayashi, Z. Cui, Y. Kiyota and M. Ohnishi, Chem. Pharm. Bull., 1986, 34, 4590.

18 N. Shoji, A. Umeyama, K. Shin, K. Takeda, S. Arihara, J. Kobayashi and M. Takei, J. Org. Chem., 1992, 57, 299.
19 L. M. D. John, W. F. Tinto, S. McLean and W. F. Reynolds, J. Nat. Prod., 1993, 55, 144.
20 T. Iida, M. Kikuchi, T. Ishikawa, T. Tamura and T. Matsumoto, Org. Magn. Reson., 1982, 19, 228.
21 M. Kobayashi, F. Kanda, C. V. L. Rao, S. M. D. Kumar, G. Trimurtulu and C. B. Rao, Chem. Pharm. Bull., 1990, 38, 1724.

22 A. Casapullo, E. Finamore, L. Minale, F. Zollo, J. B. Carre, C. Debitus, D. Laurent, A. Folgore and F. Galdiero, J. Nat. Prod., 1993, 56, 105.
23 L. Minale, C. Pizza, R. Riccio, C. Sorrentino, F. Zollo, J. Pusset and G. Bargibant, J. Nat. Prod., 1984, 47, 790.

24 R. Riccio and J. Pusset, Tetrahedron, 1982, 38, 3615.
25 M. Iorizzi, L. Minale, R. Riccio and T. Yasumoto, J. Nat. Prod., 1992, 55, 866.
26 Z. Boncza-Tomaszewski, Can. J. Chem., 1987, 65, 656.
27 D. Leibfritz and J. D. Roberts, J. Am. Chem. Soc., 1973, 95, 4996; H. Beierbeck, J. K. Saunders and J. W. ApSimon, Can. J. Chem., 1977, 55, 2813. Assignment of C-4 and C-7 of 5β-cholane- $3 \alpha, 6 \alpha$-diol was reversed in this report. The β - and γ-effects of $6 \alpha-\mathrm{OH}$ for $\mathrm{C}-7$ and C-4 are therefore 8.6 and -6.2 ppm , respectively.

Paper 4/04112G
Received 5th July 1994
Accepted 12th September 1994

